In this research direction we work with a much reduced thickness of polymeric sensing films that are spin coated onto a solid transducer support. This allows one to drastically reduce mass transport limitations within the membrane. An applied potential can then completely turn over the composition of the membrane to a new equilibrium value. Numerous fundamental studies become possible with this tool, especially when a lipophilic reference ion is used to uncouple the potential change at the inner transducing layer side of the membrane. This research direction was originally inspired by the group of Amemiya (Pittsburgh) and was started in our group back in 2009.
Publications:
(1) Mao, C. W.; Robinson, K. J.; Yuanb, D. J.; Bakker, E. Ion-ionophore interactions in polymeric membranes studied by thin layer voltammetry. Sensor Actuat B-Chem 2022, 358. DOI: 10.1016/j.snb.2022.131428.(2) Zdrachek, E.; Bakker, E. Unbiased Selectivity Coefficients of Potentiometric Sensors Using Thin Membrane Layers. Electroanal 2021, 33 (5), 1225-1232. DOI: 10.1002/elan.202060605.
(3) Mao, C. W.; Yuan, D. J.; Wang, L.; Bakker, E. Separating boundary potential changes at thin solid contact ion transfer voltammetric membrane electrodes. J Electroanal Chem 2021, 880. DOI: 10.1016/j.jelechem.2020.114800.
(4) Forrest, T.; Zdrachek, E.; Bakker, E. Thin Layer Membrane Systems as Rapid Development Tool for Potentiometric Solid Contact Ion-selective Electrodes. Electroanal 2020, 32 (4), 799-804. DOI: 10.1002/elan.201900674.
(5) Jarolimova, Z.; Bosson, J.; Labrador, G. M.; Lacour, J.; Bakker, E. Ion Transfer Voltammetry at Thin Films Based on Functionalized Cationic [6]Helicenes. Electroanal 2018, 30 (4), 650-657. DOI: 10.1002/elan.201700669.
(6) Jarolimova, Z.; Bosson, J.; Labrador, G. M.; Lacour, J.; Bakker, E. Ion Transfer Voltammetry in Polyurethane Thin Films Based on Functionalised Cationic [6]Helicenes for Carbonate Detection. Electroanal 2018, 30 (7), 1378-1385. DOI: 10.1002/elan.201800080.
(7) Jansod, S.; Wang, L.; Cuartero, M.; Bakker, E. Electrochemical ion transfer mediated by a lipophilic Os(II)/Os(III) dinonyl bipyridyl probe incorporated in thin film membranes. Chem Commun 2017, 53 (78), 10757-10760. DOI: 10.1039/c7cc05908f.
(8) Cuartero, M.; Acres, R. G.; Bradley, J.; Jarolimova, Z.; Wang, L.; Bakker, E.; Crespo, G. A.; De Marco, R. Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes. Electrochim Acta 2017, 238, 357-367. DOI: 10.1016/j.electacta.2017.04.047.
(9) Cuartero, M.; Crespo, G. A.; Bakker, E. Ionophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes. Anal Chem 2016, 88 (3), 1654-1660. DOI: 10.1021/acs.analchem.5b03611.
(10) Cuartero, M.; Crespo, G. A.; Bakker, E. Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing. Anal Chem 2016, 88 (11), 5649-5654. DOI: 10.1021/acs.analchem.6b01085.
(11) Cuartero, M.; Acres, R. G.; De Marco, R.; Bakker, E.; Crespo, G. A. Electrochemical Ion Transfer with Thin Films of Poly(3-octylthiophene). Anal Chem 2016, 88 (13), 6939-6946. DOI: 10.1021/acs.analchem.6b01800.
(12) Cuartero, M.; Crespo, G. A.; Bakker, E. Thin Layer Samples Controlled by Dynamic Electrochemistry. Chimia 2015, 69 (4), 203-206. DOI: 10.2533/chimia.2015.203.
(13) Crespo, G. A.; Cuartero, M.; Bakker, E. Thin Layer Ionophore-Based Membrane for Multianalyte Ion Activity Detection. Anal Chem 2015, 87 (15), 7729-7737. DOI: 10.1021/acs.analchem.5b01459.
(14) Si, P.; Bakker, E. Thin layer electrochemical extraction of non-redoxactive cations with an anion-exchanging conducting polymer overlaid with a selective membrane. Chem Commun (Camb) 2009, (35), 5260-5262. DOI: 10.1039/b907893b.